Preet Patel

O North Carolina, United States $\unrhd_{\text {patelpb96@gmail.com }}$
$\square+16307156148$
in https://www.linkedin.com/in/patelpb96/ https://patelpb96.github.io/

SUMMARY

Highly motivated learner with a background in physics, math, python, HPC, data science, and statistics. I work independently and collaboratively and possess an arsenal of technical communication skills. Adept at using quantitative analyses to approach difficult \& undefined problems which lack existing procedures.

EDUCATION

M.S. Physics	University of California, Davis	$2020-2023$
B.S. Physics	University of Michigan, Ann Arbor	$2015-2019$
B.S. Astrophysics	University of Michigan, Ann Arbor	$2015-2019$
Minor in Statistics		

PROJECTS

Python Module Development and Implementation (Element Tracers) - Github

- Implemented new models and made them accessible to entire collaboration (200+ people), enabling new and ongoing projects.
- Optimized existing code for element tracer processing from 2 classes into 1 , with a speedup over 50% for use with ML.

Maximum Likelihood Estimation and MCMC - Github

- Wrote data analysis pipeline to analyze raw observational data with simple means and variance with fits to a gaussian profile; a maximum likelihood estimation after constructing a log-likelihood function; an MCMC algorithm (AstroPy/Emcee) to convergence.
- Successfully determined the wavelength of light at which the emission occurs, identifying the source for astrophysical calibration.

Metropolis-Hastings Algorithm: Galaxy Mass Luminosity Relation - Github

- Manually implemented an algorithm using a Metropolis-step to determine the best fit model to galaxy-catalog data, in massluminosity space, out to 50,000 steps with a burn in of 2,000 steps.
- Successfully converged on the observed/theoretically predicted galaxy mass-luminosity relation.

EXPERIENCE

Graduate Researcher (Astrophysics)
March 2021 - September 2023
University of California - Davis

- Utilized Python, parallel processing, supercomputers, advanced mathematics, ML methods (MCMC, likelihood analysis), scaling analysis, and hydrodynamic simulations to complete multiple projects with the FIRE collaboration.
- Parsed through several petabytes of simulation data stored as HDF5s across national supercomputers. Additionally optimized runtime by $\mathbf{5 0 \%}$. Result: 1 publication, with at least 2 more in prep. A subset of this data publicly found at
https://fire.northwestern.edu/.

Teaching Assistant (TA)

October 2020 - April 2023
University of California - Davis

- Used data visualization, verbal communication, black/whiteboard skills to teach students about complex physical phenomena across various subfields of physics.
- (example: quantum mechanics for non-STEM majors, with detailed lectures and spontaneous visualizations) Class sizes: 30250 students, for 1 to 3 hours per session.

Bluewaters Student Intern

May 2018 - May 2019
University of California - Davis

- Created my own computing cluster using laptops, and optimized programs on HPC systems with CUDA, OpenMP and MPI.
- Explored parallelization based on job type and architecture (GPU vs CPU) to create n-body (10^{5}) galaxy simulations.

SKILLS

Hard Skills: Git version control; high performance computing, Python and data analysis libraries (Numpy, Scipy, Matplotlib, Pandas); big data analytics, visualization, and machine learning (ML) analysis (Emcee, Tensorflow); postgraduate mathematical skills; LaTeX; Linux/Unix; SQL; OpenMP/MPI
Soft Skills: English communication skills, strong presentation skills, motivated and independent self-learner, persuasive writing, critical thinking, curiosity, teamwork, adaptability
Other: English, Gujarati, working proficiency in Spanish, Graphic Design (Photoshop, Cinema 4D), Media Production (Sony Vegas, After Effects)

